# AMAL JYOTHI LAB VIEW ACADEMY

## THE COURSE DESIGN

The Lab View course can be divided in to two

- 1. Lab VIEW Core-I
- 2. Lab VIEW Core-II

### 1. Lab VIEW Core- I

The Lab VIEW Core- I introduces the basic Lab VIEW environment. It introduces the concept of Data Flow programming and common Lab VIEW architectures. It prepares the students to develop test and measurement, data acquisition, instrument control, data logging and measurement analysis applications using Lab VIEW. At the end of Lab VIEW Core- I, the students can create applications using state machine design pattern to acquire, process, display and store real world data. The course is mostly designed in a hands-on format so that the students can quickly apply skills learned in the course to their applications.

### 1.1 Course Contents

- 1.1.1. Setting up hardware
- 1.1.2. Navigating Lab VIEW
- 1.1.3. Troubleshooting and Debugging VIs.
- 1.1.4. Implementing a VI(Virtual Instrument)
- 1.1.5. Relating Data
- 1.1.6. Managing Resources
- 1.1.7. Developing Modular Applications
- 1.1.8. Common Design Technique and Pattern
- 1.1.9. Using Variables.
- 1.1.10. Interfacing the hardwires like NI USB-6211 Bus-Powered M Series Multifunction DAQ Device, NI myDAQ, NI myRIO-1900 etc.

While completing the Lab VIEW Core-I course, the students will learn

- 1. All types of controls and displays in the control palette of the front panel
- 2. The structures (including loops, global variable and local variable)
- 3. The Arrays and Matrix operations
- 4. The clusters and conversion between clusters and arrays
- 5. All numeric functions including basic mathematical operations, Conversion, Data Manipulation, Complex variables, scaling, fixed point, Math and Scientific Constant etc)
- 6. The Boolean Operations
- 7. The string Operations
- 8. The comparison Functions
- 9. The Timing Functions
- 10. The Dialogs and User Interface

- 11. The File Input/Output Functions
- 12. The waveform Functions
- 13. Report Generations
- 14. Express VIs etc.

While completing the Lab VIEW Core-I course, the students will be able to

- 1. Use Lab VIEW to create data acquisition, analysis and display operations
- 2. Create user interfaces with charts, graph and buttons
- 3. Use the programming stuctures and data types that exist in Lab VIEW
- 4. Use various editing and debugging techniques
- 5. Create and save VIs for use as SubVIs
- 6. Read and write data to files

### 2. Lab VIEW Core- II

The Lab VIEW Core-II course teaches to design complete stand alone applications with Lab VIEW. This course is an extension of Lab VIEW Core- I and introduces the common design techniques for successfully implementing and distributing Lab VIEW applications for research, engineering and testing environments.

### 2.1. Course Contents

- 2.1.1. Common Design Techniques
- 2.1.2. Synchronization Techniques
- 2.1.3. Event Programming
- 2.1.4. Error Handling
- 2.1.5. Controlling the User Interface
- 2.1.6. File I/O Technique
- 2.1.7. Improving an Existing VI
- 2.1.8. Creating and Distributing Applications
- 2.1.9. Using Variables
- 2.1.10. Web Publishing of the VI Front Panel
- 2.1.11. Block Diagram Security Settings in Lab VIEW
- 2.1.12. Interfacing of the Customized Hardware with Lab VIEW for specific applications (Serial, Parallel, USB etc)

While completing the Lab VIEW Core-II course, the students will learn

- 1. Synchronization Functions in Lab VIEW
- 2. Signal Processing Operations in Lab VIEW
- 3. Vision Module (Image Processing)
- 4. NI-DAQmx
- 5. VISA (Virtual Instrument Software Architecture)

While completing the Lab VIEW Core-II course, the students will be able to

- 1. Apply common design patterns that use notifiers, queues, semaphore, rendezvous, occurrences, first call? etc.
- 2. Programmatically control user interface objects
- 3. Optimize the reuse of existing code
- 4. Interface with MATLAB

## 3. The course Structure (Proposed)

The Lab VIEW course (both Core-I and Core-II) is designed for 10 weeks of class room study. Each week is having 3 hours and a total of 30 hours is required for the completion of the course.

## 3.1. Course Plan

| Week | Topic                                      | Reading and Homework      |  |  |  |  |  |
|------|--------------------------------------------|---------------------------|--|--|--|--|--|
| 1    | What is Lab VIEW                           | Lab VIEW Core 1 Course    |  |  |  |  |  |
|      | Project Explorer                           | Manual                    |  |  |  |  |  |
|      | Parts of a VI                              | Lab VIEW Core 1 Exercises |  |  |  |  |  |
|      | Front Panel                                |                           |  |  |  |  |  |
|      | Block Diagram                              |                           |  |  |  |  |  |
|      | Searching for Controls, VIs, and Functions |                           |  |  |  |  |  |
|      | Selecting a Tool                           |                           |  |  |  |  |  |
| 2    | Dataflow                                   | LabVIEW Core 1 Course     |  |  |  |  |  |
|      | Building a Simple VI                       | Manual                    |  |  |  |  |  |
|      | Correcting Broken VIs                      | LabVIEW Core 1 Exercises  |  |  |  |  |  |
|      | Debugging Techniques                       |                           |  |  |  |  |  |
|      | Undefined or Unexpected Data               |                           |  |  |  |  |  |
|      | Error Handling                             |                           |  |  |  |  |  |
|      | Front Panel Basics                         |                           |  |  |  |  |  |
|      | Lab VIEW Data Types                        |                           |  |  |  |  |  |
|      | Documenting Code                           |                           |  |  |  |  |  |
|      | While Loops                                |                           |  |  |  |  |  |
| 3    | For Loops                                  | LabVIEW Core 1 Course     |  |  |  |  |  |
|      | Timing a VI                                | Manual                    |  |  |  |  |  |
|      | Data Feedback in Loops                     | LabVIEW Core 1 Exercises  |  |  |  |  |  |
|      | Plotting Data—Waveform Chart               |                           |  |  |  |  |  |
|      | Case Structures                            |                           |  |  |  |  |  |
| 4    | Understanding Modularity                   | LabVIEW Core 1 Course     |  |  |  |  |  |
|      | Icon                                       | Manual                    |  |  |  |  |  |
|      | Connector Pane                             | LabVIEW Core 1 Exercises  |  |  |  |  |  |
|      | Using SubVIs                               |                           |  |  |  |  |  |
|      | Arrays                                     |                           |  |  |  |  |  |
|      | Common Array Functions                     |                           |  |  |  |  |  |
|      | Polymorphism                               |                           |  |  |  |  |  |
|      | Auto-Indexing                              |                           |  |  |  |  |  |
| 5    | Clusters                                   | LabVIEW Core 1 Course     |  |  |  |  |  |
|      | Type Definitions                           | Manual                    |  |  |  |  |  |
|      | Understanding File and Hardware Resources  | LabVIEW Core 1 Exercises  |  |  |  |  |  |
|      | File I/O                                   |                           |  |  |  |  |  |
| 6    | Using Sequential Programming               | LabVIEW Core 1 Course     |  |  |  |  |  |
|      | Using State Programming                    | Manual                    |  |  |  |  |  |
|      | State Machines                             | LabVIEW Core 1 Exercises  |  |  |  |  |  |

|    | Communication Between Parallel Loops      | LabVIEW Core 2 Course    |
|----|-------------------------------------------|--------------------------|
|    | Controls and Indicators                   | Manual                   |
|    | Variables                                 | LabVIEW Core 2 Exercises |
|    | Local Variables                           |                          |
|    | Race Conditions                           |                          |
|    | Asynchronous Communication                |                          |
|    | Queues                                    |                          |
| 7  | Event-Driven Programming                  | LabVIEW Core 2 Course    |
|    | Design Patterns                           | Manual                   |
|    | Simple Design Patterns                    | LabVIEW Core 2 Exercises |
|    | Multiple Loop Design Patterns             |                          |
|    | Error Handlers                            |                          |
|    | Generating Error Codes and Messages       |                          |
| 8  | Timing a Design Pattern                   | LabVIEW Core 2 Course    |
|    | Functional Global Variable Design Pattern | Manual                   |
|    | VI Server Architecture                    | LabVIEW Core 2 Exercises |
|    | Property Nodes                            |                          |
|    | Invoke Nodes                              |                          |
|    | Control References                        |                          |
| 9  | Compare File Formats                      | LabVIEW Core 2 Course    |
|    | Create File and Folder Paths              | Manual                   |
|    | Write and Read Binary Files               | LabVIEW Core 2 Exercises |
|    | Work with Multichannel Text Files with    |                          |
|    | Headers                                   |                          |
|    | Access TDMS Files in LabVIEW and Excel    |                          |
|    | Refactoring Inherited Code                |                          |
|    | Typical Refactoring Issues                |                          |
| 10 | Preparing the Files                       | LabVIEW Core 2 Course    |
|    | Build Specifications                      | Manual                   |
|    | Create and Debug an Application           | LabVIEW Core 2 Exercises |
|    | Create an Installer                       |                          |
|    | 1                                         | 1                        |

# 4. Program Outcome (PO) Electronics & Communication Engineering

### At the end of the Programme, a student will be able to

- 1. Apply knowledge of Mathematics, Science and Engineering to solve the complex engineering problems in Electronics and Communication Engineering
- 2. Investigate, design and conduct experiments, analyze and interpret data, make inferences from the resulting data and apply the research skills to solve complex engineering problems in analog and digital systems.
- 3. Demonstrate basic engineering practices and conduct experiments in electronics, electrical system and in programming language.
- 4. Model and simulate communication systems and analyze the performance using modern tools.
- 5. Demonstrates the knowledge of theoretical & practical aspects of signal and systems to meet desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety.

- 6. Test, measure and provide valid conclusions on energy saving design using modern engineering tools and softwares for environmental sustainability.
- 7. Understand the impact of engineering solutions on the society by considering contemporary issues through lifelong learning.
- 8. Work as a member of a project team to find cost effective design solutions to the problems related to electronics and communication systems-
- 9. Communicate effectively in both verbal and written form along with ethical responsibilities.
- 10. Design systems for applications based on the acquired knowledge to solve real time requirements.

# 5. COURSE OBJECTIVE

To understand the basic concepts of Virtual Instrumentation and application of Lab VIEW for measurement and control applications

## 5.1. COURSE OUTCOME(CO)

Upon completion of the course, the students will be able to:

- [CO 1] Understand the basics of virtual instrumentation concept and dataflow programming
- [CO 2] Understand various functions available in Lab VIEW for engineering applications
- [CO 3] Design projects using the functions available in Lab VIEW
- [CO 4] Understand the interfacing of DAQ devices and customized user designed hardware with Lab VIEW
- [CO 5] Write the Certified LabVIEW Associate Developer (CLAD) exam, administered by National Instruments, for the certification and leading to placements in core companies

### 5.2. PROGRAMME OUTCOME - COURSE OUTCOME (Mapping)

| COURSE OUTCOME                                                                        | PROGRAM OUTCOME |      |      |      |      |      |      |      |      |
|---------------------------------------------------------------------------------------|-----------------|------|------|------|------|------|------|------|------|
| Upon completion of the course, the students will be able to:                          | 1               | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 10   |
| CO1 Understand the basics of virtual instrumentation concept and dataflow programming | High            | High | High | High | High | High | High | High | High |
| CO2 Understand various functions available in Lab VIEW for engineering applications   |                 |      | High | High |      | High |      |      |      |

| CO3 Design projects using the functions available in Lab VIEW                                                                                                            |  | High       | High       |      |      | High |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|------------|------|------|------|
| CO4 Understand the interfacing of DAQ devices and customized user designed hardware with Lab VIEW                                                                        |  | Med<br>ium | Medi<br>um |      |      | High |
| CO5 Write the Certified LabVIEW Associate Developer (CLAD) exam, administered by National Instruments, for the certification and leading to placements in core companies |  |            |            | High | High |      |

### 6. Exams

- 1. There should be an examination after the completion of the 10 week course and topics are material from the lectures, assigned readings and videos and from programming assignments. It should consist of written questions as well as practical programming exercises.
- 2. The second exam will be the **Certified LabVIEW Associate Developer (CLAD)** exam administered by National Instruments. It is an online exam consisting of 40 multiple choice questions. A minimum of **70% (28 out of 40)** is required for getting the CLAD certification from National Instruments.

## 7. Project

Each student should do a project after the completion of the 10 week course. Each project must involve interfacing a computer to data acquisition hardware. Projects can be completed either individually or as a group. The instructor must approve the makeup of any group. Students are also encouraged to submit their project to the **VI MANTRA** and **NI YANTRA** competition conducted by National Instruments.

### 8. The course fee and other details

• Lab VIEW Core-I

Pre-requisite : None Course fee : 4000/-

• Lab VIEW Core-II

Pre-requisite : Should complete Core-I

Course fee : 3000/-